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S u m m a r y  

Dynamic mechanical  measurements on polystyrene - po ly (v iny lmethy le ther )  blends 
are demonst ra t ing that  the re laxat ion  processes in the blends are main ly  connected 
w i th  the mot ions of  the po ly (v iny lmethy le ther )  chain. 

Concerning the e f fec t  o f  m ix ing  on topolog ica l  proper t ies  of  the blends, an increase 
o f  the polyd ispers i ty  of  the re laxat ion processes is detected in blends w i th  high molec-  
ular weight  polystyrene whi le low molecu lar  weight  polystyrene exer ts  an e f fec t  
o f  d i lu t ion upon the re laxat ion o f  the high molecular  po ly (v iny lmethy le ther )  chains, 

From these measurements as wel l  as f rom thermoana ly t i ca l  data i t  results that  the 
energet ic  in terac t ion  is more pronounced in the blends w i th  o l i gomer ic  than w i th  
high molecu lar  weight  polystyrene.  The glass t rans i t ion tempera tu re  shows a larger 
dev iat ion f rom add i t i v i t y  for  blends w i th  high molecular  polystyrene than fo r  those 
w i th  o l igomer ic  polystyrene.  

I n t r o d u c t i o n  

Compat ib le  po lymer  blends represent a chal lenge for  systemat ica l  studies of  the 
in ter re la t ions between the molecular  parameters  of  the macromolecu la r  components, 
the i r  mutual  in terac t ion and the i r  physical and appl icat ional  propert ies.  A l though 
two - and mul t iphase blends exh ib i t  higher technological  interest ,  basic in fo rmat ion  
on compat ib le  systems is the key for  a f inal  understanding of  the more compl ica ted  
systems. Benef i t  w i l l  be taken also f rom basic knowledge on compat ib le  systems for  
studies concerning compat ib i l i za t i on  of  immisc ib le  blends via s t rongly  in te rac t ing  
groups. 

Because compat ib le  po lymer  blends are po lymer  - po lymer  solutions, i t  seems to be 
wor thw i l e  to look for  para l le l i t ies  w i th  solutions of  macromolecules in low molecu lar  
weight  solvents and in o l igomers.  

Theoret ica l  approaches, which take into account entha lp ic  demix ing  at low t emper -  
atures and ent ropy dr iven separat ion at higher tempera tures  are not too successfull 

1) up to now in pred ic t ing  c r i t i ca l  phenomena . F i rst  a t tempts  have been made 2) to 
der ive c r i te r ia  for  po lymer  blend compa t i b i l i t y  f rom exper imenta l  data der ived f rom 
po lymer  solutions in solvents, whose s t ructure is analoaeous w i th  that  of  segments 
of  the second macromolecu la r  component in the blend 37 4) 5). The concept of  group 
contr ibut ions to the thermodynamica l  behaviour, which is a base of  the theore t i ca l  
and the exper imenta l  approaches, is not d is t inc t i ve  enough, however,  to make re l iab le  
predict ions.  

In a series of  papers we wi l l  t r y  to  give contr ibut ions to the problems discussed. Com-  
pat ib le  blends of polystyrene - po ly (v iny lmethy le ther )  (PS - PVME) are a t t r a c t i v e  
models for  such studies. In this paper inf luences of  in teract ions on the v iscoelast ic  
segmental  mot ion in polystyrene - po ly (v iny lmethy le ther )  blends w i l l  be t rea ted.  
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E x p e r i m e n t a l  

PVME (BASF) w i th  M w = 73000 has been choosen as the one component,  PS wi th  M w 
= 800, Mw/M n = 1.3 (PS800) and M w = 75000, Mw/M n = 1.06 (PS75k), respect ive ly ,  
as the other  one. Thus an o l igomer  component of fers the a t t r ac t i ve  chance to study 
v iscoelast ic  e f fec ts  of  macromolecu la r  and p las t ic izer  act ion. 

Mix tures w i th  PS800 have been prepared in me l t  under ni t rogen atmosphere.  Those 
w i th  PS75 k were received by f reeze-dry ing  f rom toluene solution. Mechanical measure- 
ments were carr ied out w i th  the INSTRON 3250 Rheometer in the cone-and-plate 
geomet ry ,  in the osc i l la t ing  mode. With the system PVME-PSs00 they have been per-  
fo rmed in the same tempera tu re  range for  al l  composit ions. The measured viscoelast ic 
data range f rom the f low region through the rubber plateau up to onset t ing of  the 
glass t rans i t ion region. With PS75 k as the second component only the m ix tu re  w i th  
24.1 w. % PS could be invest igated wi th in  the same tempera tu re  and modulus region. 

Tg values have been determined wi th  a PERKIN-E/MER DSC-2, the presented data 
being ex t rapo la ted  for  zero heat ing rate.  

R e s u l t s  a n d  D i s c u s s i o n  

The Relaxation Time Spectrum 

For al l  systems the storage and loss modul i  and the dynamic viscosit ies have been 
de termined.  Al l  master  curves prove the va l id i t y  of  the t ime - tempera tu re  superposi- 
t ion pr inc ip le .  Thus the shape of  the re laxa t i on - t ime  spectra is tempera tu re  invar iant  
w i th in  the measured region, and the tempera tu re  inf luence on the v iscoelast ic behaviour 
occurs via the local f l ow process only, i. e. via the tempera tu re  dependence of  the 
shi f t  fac tors .  In the fo l lowing a s t r i c t  d iscr iminat ion between the mechanica l ly  in i t ia ted  
re laxat ion process and the local f l ow process appears to be there fore  favourable.  

In the te rmina l  zone of  v iscoelast ic behaviour a character is t ic  quant i ty  for  the wid th  
o f  the re laxa t i on - t ime  spectrum is given by the product of  the s ta t ionary  compl iance, 
.leO, and the storage modulus of  the rubber plateau, GN ~ 6) : 

co co 

d in0 dln01 G ~ jo = _oo 
N e 

[_~oo0 H(G)d lnG /IH(0)a d ln0 
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(a = Time of beginning of  the rubber plateau) 

GN ~ and Je ~ are def ined as: 

o = f0H(8) d in0 G N 
a 0=@ (T o) 
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2 
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Je ~ is cor re la ted  w i th  the zero shear viscosity, no, and the character is t ic  constant, A G, by: 

jo = AG/n2o 
e (4) 
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These quant i t ies are re la ted via the re laxat ion t ime  spectrum w i th  the storage and 
the loss modulus 7 )  Equ. (1) demonstrates that  the product  GNO Je ~ may be understood 
as the ra t io  of  a two -momen t  order average and an one-moment  order  average of 
re laxat ion  t imes,  no ,  AG and GN~ can be es t imated  graphica l ly .  GN ~ was ident i f ied  
w i th  the in f lex ion point o f  the respect ive storage modulus master  curve. Table 1 
presents the results. 

Table I :  Charac te r is t i c  magni tudes of  the re laxat ion  t ime  spectrum in the te rmina l  
zone. 1 - PS75 k , 2 - PVME. Blends of  PVME wi th :  3 - PS7s k ,  4 / 6 - PS800 

PS800 could not be charac ter ized  in this way because of  the missing rubber p lateau 

PS T log ~ log ~ log A G log jo <@> 
kPa. sT kPa kPa. e log (J~G~) w 

%w/w K rad (s/tad) 2 kPa-i <@>n 

i iOO 439 0.92 2.11 -0.25 -2.09 0.02 1.O5 

2 0 310 I.ii 2.23 1.26 -0.96 1.27 18.8 

3 24.1 334 1.7 2.12 4.13 0.73 2.85 707 

4 8.6 308 1.68 2.16 2.34 -1.O2 1.14 13.8 
5 24.2 308 1.45 1.9 2.11 -0.68 i.Ii 12.8 
6 75.4 297 1.51 1.13 2.1 -0.92 O.21 1.26 

Figure 1 i l lus t ra tes the d ramat i c  d i f fe rence between 
mix tures  w i th  low and wi th  high molecu lar  weight 
PS. Ol igomer  PS acts l ike a solvent w i th  respect 
to the re laxat ion  t ime  spectrum, wheras the high 
molecu lar  PS broadens st rongly  the re laxat ion 
t ime  spectrum in the f low region. Figure 2 visual izes 
c lear ly  the increase of the polyd ispers i ty  of  the 
re laxat ion process for  the 2 4 . 1 %  / 75.9% m ix tu re  
of  PS75 k and PVME, where the isotherm G' -master  
curves are supplementary shi f ted to superpose at 
the inf lex ion points, GN~ 

Heterogeneos topolog ica l  s i tuat ion of  chain segments 
in the PVME-PS75 k mix tures  may cause this broad-  
ening of the re laxat ion  t ime  spectrum, due to the 
coexistence of  in te rac t ing  PVME-PS segments 
w i th  non-contact ing chains o f  ident ical  s t ructure,  as 
demonst ra ted by FT-I R studies 8)  

Mixtures o f  PS800 w i th  PVME may be able, however,  
to contact  qui te quan t i t a t i ve l y  because of  the 
short chain length of  the fo rmer ,  exh ib i t ing  conse- 
quent ly  a polyd ispers i ty  of  the re laxat ion process 
s i tuated between those of  the components.  Onogi et 
al. 9) 10) have demonst ra ted that  this is also val id  
for  m ix tu res  o f  s t ruc tu ra l l y  ident ical  po lymers w i th  
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d i f f e ren t  molecular  heterogenei ty ,  molecu lar  weights exceeding entanglement  length. 
In the re laxat ion  processes the PVME chains essent ia l ly  are engaged as ind icated by 
the fac t  tha t  the apparent  ac t i va t ion  energy of  f l ow of  the mix tures  is very close to 
tha t  of  pure PVME (see Figure 8). Both, the broadening of  the re laxat ion  t ime  spec- 
t rum for  the 24.1% - 75.9% PS75 k - P V M E  mix tu re  and the re la t i ve l y  small  ac t i va -  
t ion energy of  f l ow cause a small  t empera tu re  coe f f i c ien t  of  the v iscoelast ic  proper t ies,  
i.e. a re la t i ve  f l a t  isochrone master  curve 11), as shown in Figure 3. It may be rememb-  
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Figure  2: C o m p a r i s o n  o f  the  po lyd ispers i ty  o f  the r e l a x a t i o n  processes in the  t e r m i n a l  zone 
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Figure/4:  Isochrone master  curves o f  G' o f  the 
I .  PS800 - 2. PVME - 3, m i x t .  w. 8.6% - 4, 

ered tha t  the slope o f  the isochrone master  3 
curves is g iven by the product  o f  the r e l a x a t -  
ion t i m e  spect rum and the a c t i v a t i o n  energy  
12). The f l a t  isochrone master  curve suggests 
a tendency  o f  the p roper t ies  o f  the m i x t u r e  
to  remove ,  w i th  increasing t e m p e r a t u r e ,  f r om 
those o f  PVME, aproach ing those o f  PS. 

The isochrone master  curves w i th  the o l i go -  2 
mer  PS800 (F igure 4) exh ib i t  d i f f e ren t  
behav iour .  For instance al l  m ix tu res  w i th  
less than 50% PS800 exceed the n iveau 
o f  the storage modulus o f  both the  compon-  
ents down to  low tempera tu res .  This again 
may  be an ind ica t ion  of  in tens ive PVME- 1 
PS contacts .  

With respect  to  the changes o f  the re l axa t i on  
t i m e  spectra,  the m ix tu res  w i th  o l i gomer  
PS show pa ra l l e l i t i e s  to  po l ymer  solut ions.  
An exponen t ia l  dependence of  the p la teau  
modulus on po l ymer  vo lume f rac t i on ,  4 , 
is found fo r  the PS80 O-  PVME, as repo r ted  o 
fo r  po ly (butad iene)  solut ions 6). GNO = 
1.18.102 4 -2"22 has been repo r ted  for  semi -  
d i l u ted  po ly (bu tad iene)  solut ions and GN~ = 
1.66"102 4 -1"93 has been found for  the 
PS800 -PVME blend (F igure 5). 

m i x t u r e  w i th  o l i gomer  PS, Tred = T@+ 120 K 
m ix t .  w, 24.2% - 5. m i x t .  w. 75 .4~  PS800 

�9 Homopolymer 

�9 Polymermixtures 
system A 

6"z 

GN o = 1.66"IO2.~ -1.93 

o 1.18.102.#-2-22 
G N = 

I I I 
PS 0.25 % 0.5 0.75 PVME 

( # = weight fraction of PVME) 

Figure 5: In f luence o f  d i l u t i on  o f  
PS800 on G N o f  the m ix tu res  

A f t e r  hav ing discussed the in f luence o f  mo lecu la r  i n te rac t ions  on the r e l a x a t i o n  t i m e  
spect rum o f  the studied po l ymer  blends, t he i r  ro le  in the local f l ow  processes may  
be t r e a t e d  now. 
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T g  a n d  t h e  L o c a l  F l o w  P r o c e s s  

Local f low processes are connected with the mobi l i ty  of the polymer chains, and it 
is well known that the glass transit ion, Tg, is connected with that mobi l i ty .  Conse- 
quently, Tg is used f requent ly  as parameter  when discribing the temperature depend- 
ence of  the local f low processes 13). As the chain mobi l i ty  is inf luenced by both ener- 
get ic and entropic interact ions one may conclude that this is also re f lec ted in the 
glass t ransi t ion and in the local f low process. 

The analysis of  the Tg behaviour may be presented f i rst .  Figure 6 shows the Tg-data, 
including the ava i lab le- l i te ra ture values of  blends with high molecular weight PS. 
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Figure 6: Tg-data of  PVME / PS blends, l i te -  
rature data included. Own data : 
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Figure 7: Reduced Tg-data of  PVME / 
PS blends, -sample data l ike 
in Figure 6 

For both the blends of  PVME, with ol igomer and high molecular weight PS, the exper i -  
mental  data cannot be f i t t ed  by any of  the empir ical  rules, which are supported by 
the thermodynamic mix ina relat ions assumina cont inui ty  of  the extensive thermo- 
dynamic func'tions at Tg 13) 16). This is true for the common add i t i v i t y  rules, be they 
a r i thmet i c  or geometr ic  mean rules (the la t ter  the Fox re lat ion 17)), as well as for  
the Gordon-Taylor equation 18) Only the introduct ion of  a supplementary adjustable 
term, as proposed by Kwei 19), enables the f i t  o f  the exper imental  Tg-data of the 
discussed blends. 

For cont inu i ty  of  extensive thermodynamic functions at Tg, enthalpy and volume, 
respect ively,  the Tg of  a polymer ic  binary compat ible mixture is re lated with the Tg i- 
values of  the components accordingly to Couchman 15) by the expression 

Tg = (KIWlTgI+K2w2Tg2) / (KIWI+K2w2) ( 5 ) 

where K i = ACPi in the enthalpic version and K i = ViOA~ i in the volume version of  the 
equation. The mole f ract ion X i is replaced by the weight f ract ion,  w i. Introducing 
K -- K2/K 1 and assuming K = I the, a r i thmet ic  mean rule is obtained, whereas the accept- 
ance of  the Boyer rule 20), ACpiTg i % const., leads to the geometr ic  mean re lat ion 
of  Fox. 

Kwei introduces a supplementary correct ion factor,  qwlw2,  for bet ter  f i t  o f  the expe- 
r imental  Tg-data of  compat ib le blends: 
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Tg = (WlTg1+Kw2Tg2)/(Wl+KW2) + qwlw 2 ( 6 )  

Figure 6 suggests, however,  also a d i f f e ren t  behaviour of  the PVME blends w i th  o l igo-  
met  and high molecular  weight  PS, respect ive ly .  Accord ing to the iso-f ree volume 
state assumption of  the glass t rans i t ion  tempera ture ,  in t roduct ion of  PS in PVME 
contr ibutes general ly  to an increase of the f rac t iona l  f ree volume, which mani fests 
in lower ing of  the Tg of the blend. This increase in f ree volume is substant ial  for  al l  
composi t ions of  the h igh molecu lar  weight  blend, whereas in the blend w i th  o l igomer  
PS the add i t i v i t y  rule is respected up to an PS content  of  about 40 - 50 w% PS. That 
means that  the o l igomer  PS chain contacts more intensive w i th  the mobi le  PVME chain 
than high molecular  weight  PS (Figure 6) .  

These e f fec ts  are be t te r  evidenced i f  a normal ized  p lot  o f  Tg data is per fo rmed (Figure 
7). For c l a r i t y  only l i t e ra tu re  data o f  Bank et al.  14) are included in the Figure. 

From the dynamical  mechanical  data the apparent ac t i va t ion  energy of  f l ow has been 
der ived.  The dependence of  this magni tude on composi t ion of  the PVME-PS mix tu res  
and on rec iprocal  tempera tu re  is shown in Figure 8. The small  increase of the appar-  
ent  ac t i va t ion  energy of  f l ow by adding PS to PVME suggests that  the mob i l i t y  o f  the 
PVME chain is dominant l y  responsible for  the local f low process up to high PS contents,  
i.e. the s t i f fe r  PS chains are f loa ted  by the moving PVME chains. The re ta rd ing  e f fec t  
o f  the PS on the f low o f  PVME increases w i th  its molecu lar  weight  and by lower ing 
the tempera tu re .  The molecular  weight  e f fec t  again suggests a be t te r  contact  o f  the 
ol igorner to the PVME than of  the high molecular  weight  PS chain. Consequent ly the 
re la t i ve  number o f  in te rac t ing  sites w i l l  be higher in the blend wi th  o l igomer  PS. 

-) 

/mole} 

PS 50 w ~ b'vlq~- 
Figure 8: Plot o f  the E(T)-values versus composi t ion and rec iprocal  tempera tu re  

for  PVME and the PS-PVME-mixtures in the measured tempera tu re  range 

apparent ac t i va t ion  energy for  mix tures  w i th  PS800 
- - e - -  apparent ac t i va t ion  energy of  f l ow for  the m ix tu re  w i th  24,1 w% high MW PS 

. . . . .  ex t rapo la ted  E(T)-values for  PS800 
- - o - -  de te rmined E(T)-values for  PS800 f rom the very small  analyzable T-range 
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It may be noted that  mix tures w i th  higher content of  high molecular  weight PS could 
not be measured in the same rheological  geometry .  Therefore these data are not included 
in the Figure. 

Both T g - d a t a  and rheological  measurements suggest that  the contact  of  the s t i f fe r  
PS chain to  the mobi le PVME chain diminishes by increasing the molecular  weight  
o f  the PS component.  Consequently, the re la t i ve  number of  in teract ion sites between 
the chains decreases, cont r ibut ing to an increase of  the f rac t iona l  f ree volume in the 
blend. Thus general decrease of  the Tg of  the blend wi l l  be e f fec ted.  On the other 
hand the mob i l i t y  of  PVME wi l l  be more and more hindered by the increase of the 
volume of the contact ing PS coi l .  A more deta i led analysis wi l l  be presented elsewhere. 
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